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Abstract: Stochastic activity networks (SANs) are a powerful and flexible extension of Petri nets. These models 
can be used for the modelling and analysis of various kinds and different aspects of distributed real-time 
systems. Similar to other classical extensions of Petri nets, SANs have some limitations for modelling complex 
and large-scale systems. In order to remove some of these limitations and provide high-level modelling 
constructs, we have defined a new extension for SANs, called hierarchical stochastic activity networks 
(HSANs). HSAN models provide a construct for composing a hierarchy of SAN submodels that is called macro 
activity. HSANs encapsulate hierarchies and a key benefit of these models is the possibility of automatic 
selection and usage of techniques for model construction with reduced state spaces by their modelling tools. In 
this paper, we will present the informal and formal definitions, behaviour and state process of HSANs. We will 
also introduce methods for the solution of HSAN models by state space analysis and discrete-event simulation 
techniques.  
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1. INTRODUCTION 

Stochastic activity networks (SANs) [Movaghar and 
Meyer, 1984] are a stochastic generalization of 
Petri nets [Peterson, 1982]. These models are more 
powerful and flexible than most other stochastic 
extensions of Petri nets such as stochastic Petri nets 
(SPNs) [Molloy, 1982] and generalized stochastic 
Petri nets (GSPNs) [Ajmone; Balbo and Conte 
1984]. SANs permit the representation of 
concurrency, timeliness, fault-tolerance and 
degradable performance in a single model 
[Movaghar, 1985]. SAN models have been used to 
evaluate performance and dependability of a wide 
range of systems and are supported by several 
powerful modelling tools such as UltraSAN 
[Sanders et al, 1995] and Möbius [Deavours et al, 
2002]. 

Similar to other classical extensions of Petri nets, 
SANs have some limitations for modelling complex 
and large-scale systems. In order to remove some of 
these restrictions, we have introduced a new 
extension for SANs called hierarchical stochastic 
activity networks (HSANs) [Abdollahi and 
Movaghar, 2003]. HSAN models encapsulate 
hierarchies and a key benefit of these models is the 
possibility of automatic selection and usage of 
techniques for model construction with reduced 
state spaces. 

In this paper we will present the informal and 
formal definitions, behaviour and state process of 
HSANs. We will also basically introduce methods 
for state space analysis and simulation of HSAN 

models and show how the existing methods can be 
used for these purposes. 

The rest of this paper is organized as follows. In 
Sec. 2, motivations of this work are described. In 
Sec. 3, the informal definitions and an example of 
HSAN models are presented. The formal 
definitions, behaviour and state process of HSANs 
are presented in Sec. 4. Methods for the 
transformation, analytic solution and simulation of 
HSANs are introduced in Sec. 5. Finally, some 
concluding remarks are mentioned in Sec. 6. 

2. MOTIVATIONS 

In the original definition of stochastic activity 
networks [Movaghar and Meyer, 1984], these 
models have been defined as a flat network of 
primitives. However, a few techniques have been 
introduced for constructing hierarchical and 
composed SAN models in UltraSAN and Möbius 
modelling tools.  

An important state space reduction technique, 
which is implemented in UltraSAN and Möbius 
modelling tools, is the Replicate/Join construct 
[Sanders and Meyer, 1991]. This construct provides 
a hierarchical, tree-like method of combining 
submodels to form a larger, composed model. As 
the name may imply, there are two main methods 
that can be used to combine submodels: Replicates 
and Joins. Replicates are used to replicate a model 
any number of times, often having one or more 
state variables shared among all of the replicas as a 
means of connection. Joins are used to bring 
together two or more dissimilar models, connecting 
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them by sharing certain state variables between 
them [Stillman, 1999].  

There is a set of issues with this construct. It is 
limited to a tree-like structure and an arbitrary 
symmetric model structure, such as ring or mesh 
cannot be expressed by this construct.  

Replicate/Join construct has been extended and 
generalized in the work of [Stillman, 1999] on the 
graph composition formalism in the Möbius 
modelling framework [Deavours, 2001]. This 
formalism does not limit the model hierarchy to a 
tree-like structure and any arbitrary structure (such 
as ring or mesh) is possible. 

Using the above techniques, a composed model is 
constructed in a bottom-up manner using some 
operations (such as Replicate and Join) [Sanders 
and Meyer, 1991]. While top-down model 
construction, especially, for large models, is more 
appropriate. On the other hand, the use of these 
composition formalisms is specific to the modelling 
tools (UltraSAN or Möbius) and not SANs in 
general. They have not been defined formally along 
with the definition of SANs.  

Related to the above difficulties, SANs have two 
other restrictions:  

• There is a lack of facilities for constructing 
complex models incrementally, by starting with 
abstract components and easily replacing them 
with detailed and enhanced components. Here, 
again a top-down paradigm for model 
construction is needed.  

• Since SAN models are flat, using a part of an 
existing model, as a component for constructing 
a new one is difficult. Specially, building and 
sharing a repository of submodels with well-
defined interfaces is not easily possible. 

On the other hand, programming languages, 
especially object-oriented languages, have simple 
and intuitive ways of encapsulating hierarchies. 
Keeping in mind these ways and to overcome the 
above difficulties and restrictions of SANs, we 
have introduced hierarchical stochastic activity 
networks (HSANs). We will introduce these models 
in the next sections of this paper. 

3. DEFINITIONS OF HIERARCHICAL 
STOCHASTIC ACTIVITY NETWORKS 

In this section we will define SAN and HSAN 
models. The formal definition and behaviour of 
HSANs will be presented in the next section.  

3.1 A New Definition of SANs 

There are two definitions for SAN models: The 
original definition of SANs [Movaghar and Meyer, 
1984 or Movaghar, 1985] and a new definition of 

SANs [Movaghar, 2001]. We will use the latter 
definition as the base model throughout this paper. 
Therefore, we will introduce a new definition of 
SANs in the following paragraphs. 

A new definition of SANs is based on a unified 
view of the system in three settings: 
nondeterministic, probabilistic, and stochastic. In a 
nondeterministic setting, nondeterminacy and 
parallelism are represented in a nondeterministic 
manner. In a probabilistic setting, nondeterminacy 
is specified probabilistically but parallelism is 
treated nondeterministically. In a stochastic setting, 
both nondeterminacy and parallelism are modelled 
probabilistically. 

The nondeterministic setting of SANs is referred to 
as activity networks, which are nondeterministic 
models for representing concurrent and reactive 
systems. Application of this setting is on the 
analysis of logical aspects or verification of 
concurrent and reactive systems. Disregarding the 
timing related information of the model and 
viewing it in a nondeterministic setting accomplish 
this. The activity network model is then translated 
into a transition system and verification is done. 

For evaluating the operational aspects of systems 
such as performance, dependability and 
performability, the stochastic setting of SANs is 
used. In this setting, both nondeterminacy and 
parallelism are represented probabilistically 
[Movaghar, 2001]. Based on the probability 
distribution of timed activities, Markovian or non-
Markovian SAN models will be resulted. 
Application of the another setting of SANs, namely, 
probabitistic setting, is on probabilistic verification. 

As we mentioned before, the nondeterministic 
setting of SANs is called activity networks. 
Activity networks have been developed for 
representing concurrent systems. The transition of 
Petri nets is replaced by a primitive called activity 
in activity networks. There are two types of 
activities: instantaneous activities and timed 
activities. The former describe events, which occur 
instantaneously, the latter represent processes, 
which usually take some time to complete. 
Instantaneous activities represent system activities, 
which, relative to the performance variable in 
question, are completed in a negligible amount of 
time. Instantaneous activities model 
nondeterminacy while timed activities represent 
parallelism. Other primitives, which distinguish 
activity networks from Petri nets, are gates. Gates 
model complex interactions among activities and, 
thus, increase modelling flexibility. 

The original definition of SANs, as appeared in 
1984, includes extra primitives, called "cases," for 
modelling nondeterminacy, which, with the new 
definition, can equivalently be replaced by some 
instantaneous activities. A model based on the 
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original definition of SANs, must be checked for 
well-behavedness. The well-behavedness check is 
in general undecidable and is computationally 
complex for most models. Some solutions have 
been proposed in the literature to alleviate this 
problem. However, in a new definition of SANs, no 
such check will ever be necessary. Because the 
syntax of the model has been defined free from 
well-behavedness checking.  

For more information about the differences 
between these two definitions of SANs, please see 
[Movaghar, 1984 and Movaghar, 2001]. 

Graphically, activity networks consist of the 
following elements: 

1. Activities, which are of two kinds: timed and 
instantaneous. In a graphical representation, a 
timed activity is depicted as and an 
instantaneous activity is shown as   . 

2. Places, depicted as       . 

3. Input gates, which have a finite set of inputs and 
one output. An input gate with n inputs is 
depicted as in Fig. 1(a). To each such input gate 
is associated a n-ary computable predicate, 
called the enabling predicate, such that e: 
Nn → {true, false} and a computable partial 
function f, called the input function, such that f : 
Nn → Nn, where f is defined for all values for 
which the enabling predicate is true and N is the 
set of natural numbers.  

4. Output gates, which have a finite set of outputs 
and one input. Gates are introduced to permit 
greater flexibility in defining enabling and 
completion rules. An output gate with n output is 
depicted as in Fig. 1(b). To each such output 
gate is associated a computable function g, 
called output function, such that g: Nn → Nn, 
where N is the set of natural numbers.  

 

 

 

 
Fig. 1.  Graphical representation of gates: (a) 

Input gate, and (b) Output gate 
 

Structurally, an activity network is an 
interconnection of a finite number of primitives, 
subject to the following connection rules 
[Movaghar, 1985]: 
1. Each input of an input gate is connected to a 

unique place and the output of an input gate is 
connected to a single activity. 

2. Different input gates of an activity are 
connected to different places. 

3. Each output of an output gate is connected to a 
unique place and the input of an output gate in 
connected to a single activity. 

4. Different output gates of an activity for a case 
are connected to different places. 

5. Each place and activity is connected to some 
input or output gates. 

In order to facilitate the use and to increase the 
understandability of activity networks, the 
following conventions are used in their graphical 
representation: 

a) Input gates with similar enabling predicates and 
input functions are named similarly. 

b) Output gates with similar output functions are 
also named similarly. 

c) An input gate with one input, enabling predicate 
e(x): x ≥ 1, and input function f such that f(x) = 
x–1, is shown as a directed line from its input to 
its output. 

d) An output gate with one output and output 
function f such that g(x) = x+1, is shown as a 
directed line from its input to its output. 

e) An input gate with one input, enabling predicate 
e(x): x = 0, and identity input function is shown 
as a directed line from its input to its output 
crossed by two short parallel lines. 

The stochastic setting of SANs is called stochastic 
activity networks. A SAN is formed by adjoining 
functions C, F, and G, where C specifies the case 
probability assigned to instantaneous activities, F 
represents the probability distribution functions of 
activity times and G describes the sets of 
reactivation markings of timed activities.  

SANs are a generalization of stochastic Petri nets 
(SPNs) [Molloy, 1982] and closely resemble the 
class of generalized stochastic Petri nets (GSPNs) 
[Ajmone; Balbo and Conte, 1985]. The 
development of SANs was motivated by the need 
for a class of network (graphical) models suited to 
modelling the performability of distributed real-
time systems. 

3.2 HSAN Models 

Now, we introduce hierarchical stochastic activity 
networks (HSANs). HSAN models provide 
hierarchies for a new definition of SANs. These 
models have a new element called macro activity, 
in addition to the five primitives of SANs. A macro 
activity is an HSAN submodel, which is composed 
of SAN elements or other macro activities.  

The syntax of the usage of macro activity is similar 
to the usage of timed or instantaneous activities. 
Place fusion is used as a mechanism for interfacing 
macro activities to other parts of an HSAN model. 

1 
2 
. 
. 
n 

1 
2 
. 
. 
n 

(a) (b) 
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A macro activity may have zero or more input and 
output fusion places. Fusion places are a subset of 
normal places. A macro activity has a well-defined 
interface that is similar to parameter passing of 
procedure and functions in high-level programming 
languages. The places surrounding a macro activity 
are formal fusion places. When a macro activity is 
used in an HSAN model, these formal places will 
be bound by actual places, which are normal places 
of SANs. In a graphical representation, a fusion 
place is depicted as      . A graphical representation 
of a macro activity is shown in Fig. 2(a) and its 
usage in Fig. 2(b). 

 

 

 

 

 

 

 

 

Fig. 2.  Graphical representation of a macro 
activity: (a) Definition, and (b) Usage 

As an example of HSAN models, please see the 
model depicted in Fig. 3. Fig. 3(a) displays a macro 
activity, called MM1NQ, for the M/M/1/N queue. 
The macro activity has the following elements: 
input (an input fusion place), Arrival (a timed 
activity that models the arrival process), ChkFull 
(an output gate that checks for the capacity of the 
queue, N), Queue (a place that models the queue 
line), Service (a timed activity that models the 
service time) and output (an output fusion place).  

The gate table for the macro activity MM1NQ is 
shown in Tab. 1. In this table, the function of output 
gate ChkFull is defined. This function checks 
whether the queue is full or not. Arrivals, Rejected 
and N are three global variables, which denote the 
number of arrivals to the system, the number of 
rejected customers and the capacity of the queue, 
respectively. 

Fig. 3(b) displays the HSAN model for a queueing 
network, composed of six tandem/parallel queues. 
Q1 through Q6, are some instantiations of the 
MM1NQ. Arrival and Departure timed activities 
models the input and output process of the network. 
Input, Output1 through Output4 are some places, 
which are bound to the input/output fusion places 
of Q1 through Q6.  

 

 

 
 

Fig. 3. HSAN representation of a queueing 
network: (a) MM1NQ macro activity, (b) The 

HSAN model 
 

Tab. 1. Gate table for the macro activity MM1NQ 
of Fig. 3 

Gate Name Function 
 
 
Output 

Arrivals++; 
if (MARK(Queue) < N) 
  MARK(Queue)++; 
else 
  Rejected++; 

 

4. FORMAL DEFINITIONS AND 
BEHAVIOUR OF HSANS 

Formal definition of HSANs is the basis for 
analytic solution and simulation of these models. 
Based on these definitions and a well-defined 
syntax and semantics, HSAN tools will facilitate 
the process of modelling and analysis with these 
models.  

The following formal definitions are based on a 
new definition of SANs [Movaghar, 2001]. In the 
following definitions, N denotes the set of natural 
numbers and R+ represents the set of non-negative 
real numbers. 

4.1 Formal Definitions of HSANs 

In this subsection, we formally define hierarchical 
stochastic activity networks, macro activity and 
some other concepts of HSANs. 

Definition 4.1. Stochastic activity network (SAN) is 
defined as a 11-tuple HSAN = (P, IA, TA, IG, OG, 
IR, OR, C, F,Π, ρ) where: 

• P is a finite set of places, 

• IA is a finite set of instantaneous activities, 

• TA is a finite set of timed activities, 

IP1 
OP1 

OPm 

:MAName 

MAInstance 

IPn 

 

(b) 

(b)

(a)

MA 

input fusion places output fusion places 

OFP1 

OFPm 

IFP1 

IFPn 

MAName

(a)
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• IG is a finite set of input gates. Each input gate 
has a finite number of inputs. To each G ∈ IG, 
with m inputs, is associated a function fG : Nm → 

Nm, called the function of G, and a predicate  
gG: Nm → {true, false}, called the enabling 

predicate of G,  

• OG is a finite set of output gates. Each output 
gate has a finite number of outputs. To each G ∈ 
OG, with m outputs, is associated a function  
fG : Nm → Nm, called the function of G, 

• IR ⊆ P × {1, ..., |P|} × IG × (IA ∪ TA) is the input 
relation. IR satisfies the following conditions: 

- For any (P1, i, G, a) ∈ IR such that G has m 
inputs, i ≤ m, 

- For any G ∈ IG with m inputs and i ∈ N, i ≤ m, 
there exist a ∈ (IA ∪ TA) and P1 ∈ P such that 
(P1, i, G, a) ∈ IR,  

- For any (P1, i, G1, a), (P1, j, G2, a) ∈ IR, i = j 
and G1 = G2. 

In a graphical representation, (Pk, k, G, a) ∈ IR 
means that place Pk is linked to k-th input of an 
input gate G whose output is connected to 
activity a. Pk is said to be an input place of a and 
G is referred to as an input gate of a. 

• OR ⊆ (IA ∪ TA) × OG × {1, ..., |P|} × P is the 
output relation. OR satisfies the following 
conditions: 

- For any (a, i, G, P1) ∈ OR such that G has m 
outputs, i ≤ m, 

- For any G ∈ OG with m outputs and i ∈ N, i ≤ 
m, there exist a ∈ (IA ∪ TA) and P1 ∈ P such 
that (a, G, i, P1) ∈ OR,  

- For any (a, G1, i, P1), (a, G2, j, P1) ∈ OR, i = j 
and G1 = G2. 

In a graphical representation, (a, G, k, Pk) ∈ OR 
means that activity a is linked to the input of an 
output gate G whose k-th output is connected to 
place Pk. G is said to be an output gate of a and 
Pk is referred to as an output place of a. 

• C: Nn × IA → [0, 1] is the case probability 
function, where n = |P|. 

• F = {F(.|µ, a); µ ∈ Nn, a ∈ TA} is the set of 
activity time distribution functions, where n = |P| 
and, for any µ ∈ Nn, and a ∈ TA, F(.|µ, a) is a 
probability distribution function, 

• Π: Nn × TA → {true, false} is the reactivation 
predicate, where n is defined as before, 

• ρ: Nn × TA → R+ is the enabling rate function, 
where n is defined as before. 

HSAN macro activity class is formally defined as 
follows: 

Definition 4.2. An HSAN macro activity class 
(MAC) is defined as a 3-tuple MAC = (SAN, IFP, 
OFP) where: 

• SAN is defined as in Definition 4.1, 

• IFP is the list of input fusion places, such that:  

- OFP ⊆ P,  

• OFP is the list of output fusion places, such that:  

- OFP ⊆ P,  

- IFP ∩ OFP = ∅, 

- IFP ∪ OFP ≠ ∅. 

Instances of a macro activity class can be used to 
compose an HSAN model. The HSAN model is 
defined as follows: 

Definition 4.3. Hierarchical stochastic activity 
network (HSAN) is defined as a is defined as a 4-
tuple HSAN = (SAN, δ, MA, FF) where: 

• SAN is defined as in Definition 4.1, 

• δ is a finite set of macro activity classes as in 
Definition 4.2, 

• MA is a finite set of macro activities. To each ma 
∈ MA is associated a macro activity class mac ∈ 
δ. 

• FF is a fusion function, which is defined as, 

FF: MA × FP → P.  

The fusion function FF, maps each fusion place 
fp of ma to a place p, where ma ∈ MA, fp ∈ 
ma.FP, ma.FP = ma.IFP ∪ ma.OFP and p ∈ P. 

Definition 4.4. Consider an HSAN as in Definition 
4.3. A marking is a function µ: P → N, where for 
each Pi ∈ P, µ (Pi) ∈ N. It is often convenient to 
characterize a marking µ as a vector, that is, µ = 
(µ1, …, µn), where µi = µ (Pi), i = 1, ..., n, and Pi 
∈ P. An activity is enabled in a marking if the 
enabling predicates of its input gates are true in that 
marking. More formally, we have: 

Definition 4.5. Consider an HSAN as in Definition 
4.3. a ∈ (IA ∪ TA) is enabled in a marking µ if for 
any input gate G of a with n inputs and an enabling 
predicate gG,  

gG(µ1, …, µ n)  = true, 
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where µk = µ (Pk), for some Pk ∈ P such that (Pk, 
k, G, a) ∈ IR, k =1, …, n. An activity is disabled in 
a marking if it is not enabled in that marking. A 
marking is stable if no instantaneous activity is 
enabled in that marking. A marking is unstable if it 
is not stable. 

4.2 Well-Defined HSAN Models 

HSANs are hierarchical models composed of 
places, timed, instantaneous or macro activities. A 
macro activity itself is composed of some places 
and timed, instantaneous or other macro activities. 
Therefore, it is needed to check for a cycle in the 
nested usage of macro activities. This check is done 
on the dependency graph (or composition graph) of 
the model. In this graph, each node is a macro 
activity and a composition relation between two 
macro activities determines an arc. The root node 
of the dependency graph is the HSAN model. If 
there is no cycle in the dependency graph of an 
HSAN model, it is well-defined and can be 
analysed by a state space analysis or simulation 
method. Therefore, we have the following 
definitions:  

Definition 4.6. Dependency graph (DG) of an 
HSAN model, as in Definition 4.3, is defined as a 
triplet DG = (N, A, R), where: 

• N = {H} ∪ MA is the set of nodes of the graph, 
such that:  

- H is the root node of the model, and 

- MA is the set of macro activities of the model, 

• A is set of arcs of the graph, and 

• R is the composition relation between two nodes 
such that: R: A → N × N. 

Definition 4.7 An HSAN model is well-defined, if 
its dependency graph is finite and acyclic. 

4.3 Behaviour of HSANs 

A hierarchical stochastic activity network (HSAN) 
with a marking is a dynamic system. The behaviour 
of HSANs can be described as follows:  

In an HSAN model, a marking will change only if 
an activity either in the root level of the model or in 
one of its macro activities completes. In a stable 
marking, only one of the enabled timed activities is 
allowed to complete. When there is more than one 
enabled timed activity, the choice of which activity 
to complete first is done stochastically. Enabled 
timed activities require some time to complete. A 
timed activity becomes active as soon as it is 
enabled and remains so until it completes; 
otherwise, it is inactive. Consider a hierarchical 
stochastic activity network H as in Definition 4.3. 
Suppose, at time t, a timed activity completes, and 

µ is the stable marking of H immediately after t. A 
timed activity a is activated at t, if a is enabled in µ 
and one of the following occurs: 

• a is inactive immediately before t, 

• a completes at t, 

• Π (µ, a) = true. 

Whenever the above happens, a is assigned an 
activity time τ, where τ is a random variable with 
probability distribution function F(.|µ, a). When a 
timed activity a is enabled in a stable marking µ, it 
is processed with a rate ρ(µ, a). A timed activity 
completes whenever it is processed for its activity 
time. Upon completion of an activity, the next 
marking occurs immediately. 

In an unstable marking, only one of the enabled 
instantaneous activities may complete (i.e., enabled 
instantaneous activities have priority over enabled 
timed activities for completion). When there is 
more than one enabled instantaneous activity, the 
choice of which activity to complete first is made 
probabilistically. More specifically, let H be a 
hierarchical stochastic activity network as in 
Definition 4.3. Suppose, H is in an unstable 
marking µ. Let A' be the set of enabled 
instantaneous activities of H in µ. Then, a ∈ A' 
completes with probability α, where  

∑ ∈

=
''

)',(
),(

Aa
aC

aC
µ

µα  (4.1). 

When an activity completes, it may change the 
marking of its input and output places. This change 
is governed by the functions of its input gates and 
output gates, and is done in two steps as follows. 
First, the marking of its input places may change 
due to the functions of its input gates, resulting into 
an intermediary marking. Next, in this latter 
marking, the marking of its output places may also 
change due to the functions of its output gates, 
resulting into a final marking after the completion 
of that activity. More specifically, let us consider a 
hierarchical stochastic activity network as in 
Definition 4.3. Suppose an activity, a, completes in 
a marking µ. The next marking µ' is determined in 
two steps as follows. First, an intermediary marking 
µ" is obtained from µ by the function of input gates 
of a. µ' is then determined from µ" by the function 
of output gates of a. More formally, µ' and µ" are 
defined as follows: 

• For any P1 ∈ P, which is not an input or output 
place of a, µ' (P1) = µ (P1), 

• For any input gate G of a with m inputs and a 
function fG, fG(µ1, ..., µm) = (µ"1, ..., µ"m), 
where µk = µ(Pk) and µ"k = µ"(Pk) such that (Pk, 
k, G, a) ∈ IR, k = 1, …, m. 
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• For any output gate G of a with m outputs and a 
function fG, fG(µ"1, ..., µ"m) = (µ'1, ..., µ'm), 
where µ"k = µ"(Pk) and µ'k = µ'(Pk) such that (a, 
G, k, Pk) ∈ OR, k = 1, …, m. 

The above summarizes the behaviour of an HSAN. 
This behaviour may be studied more formally using 
the concept of the state process of HSANs as in the 
following subsection. 

3.2 State Process of HSANs 

In order to study the state process of HSANs, we 
need to define the notion of a hierarchical 
probabilistic activity networks and hierarchical 
probabilistic activity system: 

Definition 4.8. A hierarchical probabilistic activity 
network is derived from HSAN, where the 
stochastic properties of timed activities (F, ρ and 
Π) are eliminated. In the resulting model, 
nondeterminacy is specified probabilistically by 
case probability functions (C) of instantaneous 
activities.  

Definition 4.9. A hierarchical probabilistic activity 
system is a 4-tuple (Q, A, h, p0) where: 

• Q is a set of states, 

• A is the activity alphabet,  

• h = {h(.|q, a); q ∈ Q, a ∈ A} is the set of 
transition distributions such that, for any q ∈ Q 
and a ∈ A, h(.|q, a) = 0 or h(.|q, a) is a 
probability distribution over Q, 

• p0 is the initial state distribution, which is a 
probability distribution over Q. 

For a ∈ A and q, q' ∈ Q, q' is said to be immediately 
reachable from q under a with probability α, if 
h(q'|q, a) = α. 

We now present a notion of equivalence for 
hierarchical probabilistic activity systems. 

Definition 4.10. Let U = (Q, A, h, p0) and U' = (Q', 
A', h', p'0) be two hierarchical probabilistic activity 
systems with the same activity alphabet (i.e., A = 
A'). U and U' are said to be equivalent if there exists 
a symmetric binary relation γ  on Q ∪ Q' such that: 

• Q = γ (Q') and Q' = γ (Q), 

• For any q0 ∈ Q and q'0 ∈ Q' such that (q0, q'0) 
∈ γ, 

∑ ∑
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• For any a ∈ A, q1, q2 ∈ Q, and q'1, q'2 ∈ Q' 
such that (q1, q'1) ∈ γ and (q2, q'2) ∈ γ, 
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γ above is said to be a bisimulation between U and 
U'. U and U' are isomorphic if γ is a bijection. 

Definition 4.11. Let H be an HSAN as in 
Definition 4.3. The state process of H is a random 
process {X(t); t ∈ R+} where X(t) denotes the stable 
marking of H at time t. 

Definition 4.12. Let X = {X(t); t ∈ R+} and X' = 
{X'(t); t ∈ R+} be two random processes with the 
set of states Q and Q', respectively. X and X' are 
said to be stochastically equivalent if there exists a 
symmetric binary relation γ on Q ∪ Q' such that:  

• γ (Q) = Q' and γ (Q') = Q, 

• For any ti ∈ [0, ∞), Qi ⊆ Q, and Q'i ⊆ Q', such 
that Qi = γ (Q'i) and Q' = (Qi), i = 0, …, n ∈ N, 

p[X(ti) ∈ Qi; i = 0,…, n] = p[X'(ti) ∈ Q'; i = 0, …, n]. 

X and X' are stochastically isomorphic (equal) if γ is 
a bijection (an equality). 

We have: 

Proposition 4.1. Let H = (L, F, Π, ρ) and H' = (L', 
F', Π', ρ') be two HSANs where L and L' are some 
equivalent hierarchical probabilistic activity 
networks. Suppose, L and L' realize hierarchical 
probabilistic activity systems U = (Q, A, h, p0) and 
U' = (Q', A', h', p'0), respectively. (A = A'.) The 
state processes of H and H' will be stochastically 
equivalent if there exists a symmetric binary 
relation γ on Q ∪ Q' such that: 

• γ is a bisimulation between U and U', 

• For any a ∈ A, q ∈ Q, and q' ∈ Q' such that (q, 
q') ∈ γ and a is enabled in both q and q', F(.|q, a) 
= F'(.|q', a), G(q, a) = G(q', a), and ρ(q, a) = 
ρ'(q', a). 

The state behaviour of an HSAN is closely related 
to the notion of a generalized semi-Markov process 
as defined in [Schassberger, 1978]. We get: 

Proposition 4.2. The following statements are true: 

• Any generalized semi-Markov process with a 
finite set of events is stochastically isomorphic 
to the state process of an HSAN, 

• There exists an HSAN whose state process is not 
a generalized semi-Markov process, 

• The state process of any HSAN with state-
independent activity time distribution functions 
and a false reactivation predicate is a 
generalized semi-Markov process.  

We now consider Markovian models. We have: 
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Theorem 4.1. Let H be an HSAN as in Definition 
4.3. The state process of H is a Markov process iff 
for any timed activity a which is enabled in a stable 
marking µ, and any stable marking µac in which a is 
last activated prior to being enabled in µ, 

F(τ|µac, a) = 1 – e-α(µ, a)τ 

where α(µ, a) is a positive real number which only 
depends on µ and a. 

Proof. Let H = (L, F, Π, ρ) with a corresponding 
hierarchical probabilistic activity network L which 
realizes a hierarchical probabilistic activity system 
U = (Q, A, h, p0). Denote X = {X(t), t ∈ R+} the 
state process of H. 

if: We note that for any t, δt ∈ R+, where δt is 
sufficiently small, and any stable markings µ, µ' ∈ 
Q, we have 

  P[X(t+δt) = µ'|X(t) = µ, X(t) = µ, X(t'), 0 ≤ t' < t] 

= P[X(t+δt) = µ'|X(t) = µ]   

≈ ∑
∈Aa

thaa δµµµρµα )',(),(),(  

Using the memoryless property of exponentially 
distributed random variables and the dynamic 
behaviour of the model, we can conclude that X is a 
Markov process. 

only if: Note that exponentially distributed random 
variables are the only random variables with 
memoryless property and that X is assumed to be a 
Markov process. The proof then follows from the 
definition of the dynamic behaviour of the model. � 

An HSAN is said to be Markovian if its state 
process is a Markov process. We find: 

Corollary 4.1. Let H be an HSAN with a set of 
exponential activity time distribution functions such 
that any activity with a state-dependent activity 
time distribution function has also a true 
reactivation predicate. Then, H is Markovian. 

Corollary 4.2. Any discrete-space, continuous-
time, and time-homogeneous Markov process is 
stochastically isomorphic to the state process of a 
Markovian HSAN. 

5. SOLUTION OF HSAN MODELS 

If an HSAN model is well-defined (Definition 4.6 
and Definition 4.7), it can be solved by analytic 
solution or simulation methods; otherwise, it cannot 
be solved. It is possible to transform a well-defined 
HSAN model into an equivalent flat SAN model. 
Then, it is possible to employ the existing analytic 
solution or simulation techniques. It is also possible 
to transform an HSAN model to appropriate 
composition formalism. These methods are 
described in the following subsection. 

5.1 State Spaces of HSANs 

State space analysis is the standard method for the 
analysis of Petri net models. The basic idea behind 
this method is to construct a directed graph, which 
has a node for each reachable system state and an 
arc for each possible state change.  

Definition 5.1. State space (SS) of an HSAN model 
is defined as a 4-tuple SS = (M, E, A, M0), where: 
• M is the set of nodes (reachable markings of the 

graph) such that ∀µ ∈ M: µ = (µ1, ..., µn), where 
µi = µ(Pi), i = 1, ..., n, n = |P| and Pi ∈ P.  

• E is set of arcs (edges) of the graph, and 
• A is a node function such that: A: E → M × M, 
• M0 is the initial marking of the HSAN model 

such that: M0 = (µ1, ..., µn), where µi = µ(Pi), i = 
1, ..., n, n = |P| and Pi ∈ P. 

5.2 Transformation of HSANs into a Flat HSAN 
Model 

If an HSAN model is well-defined, it has an 
equivalent flat SAN model. For the analysis of an 
HSAN model, it is possible to transform it into an 
equivalent flat SAN model. A substitution 
algorithm can be employed to flatten the HSAN 
model. In each step of the algorithm, all macro 
activities on the leaves of the graph will be 
substitute by their definitions. This will be repeated 
until the only node on the graph is the root node. 
The resulting model is a flat SAN model. Since, 
naming in HSAN models is local, names of two 
elements in two different levels of the hierarchy of 
an HSAN model may be identical. To resolve the 
problem of duplicate names in the substitution of 
macro activity with its definition, the name of each 
element of an macro activity will be preceded by 
the name of its parent macro activity. For example, 
if we have an macro activity named ma1 in an 
HSAN model and there is a place named p1 in the 
definition of ma1, a place named ma1.p1 will be 
added to the flattened model. 

5.3 Transformation of HSANs into Composition 
Formalisms 

The main disadvantage of the above flattening 
method is the explosion of nodes in the resulting 
model that may lead to the explosion of the state 
space of the model. There are a few techniques for 
constructing SAN models in a way, which avoid 
state-space explosion problem. A key benefit of 
HSAN models is the possibility of automatic 
employment of such techniques by their modelling 
tools. A modelling tool for HSANs can transform a 
model into the following composition formalisms: 

1. Replicate/Join construct: A composition 
technique for SANs is the Replicate/Join 
construct [Sanders and Meyer, 1991]. A possible 
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way of the solution of HSAN models is to 
transform them into this construct. A modelling 
tool for HSANs can check for a tree-like 
structure in the dependency graph of the model. It 
can automatically find the shared states based on 
fusion places of macro activities.  Then, it can 
obtain the hierarchical and composed model 
using Replicate and Join operations.  For the 
solution of the resulting model, the technique 
proposed in [Sanders and Meyer, 1991 or 
Stillman, 1999] can be employed. 

2. Graph Composition formalism: Another 
composition formalism, which has been proposed 
in the Möbius modelling framework for SANs 
and other models, is the Graph Composition 
formalism [Stillman, 1999]. This formalism does 
not limit the model hierarchy to a tree-like 
structure and any arbitrary structure (such as ring 
or mesh) is possible. A modelling tool for 
HSANs can check for the possibility of the usage 
of this formalism. Then, it can transform the 
corresponding HSAN model and uses the method 
proposed in [Stillman, 1999] to solve the model. 

5.4 Discrete-Event Simulation of HSAN Models 

If an HSAN model or one of its macro activities is 
composed of one or more non-exponential timed 
activities or its state-space is infinite, it may not be 
solved analytically. In such cases, discrete-event 
simulation may be employed to solve the model. A 
discrete-event simulation algorithm for an HSAN 
model may have the following steps: 
1. Determine the set of enabled activities in the 

current marking of the model. 
2. Reactivate those disabled activities whose 

reactivation predicates are true in the current 
marking. 

3. Generate the activity execution time for newly 
enabled or reactivated activities. 

4. Apply the corresponding enabling rates on the 
remaining time of the enabled timed activities. 

5. If more than one instantaneous activity is 
enabled in an unstable marking, select one of 
them probabilistically. The activity selection 
probability (α) is computed by formula (4.1) of 
Sec. 4.3.  

6. In a stable marking (i.e. no instantaneous 
activity is enabled), considering the remaining 
time of all enabled timed activities and their 
respective enabling rates, select the next timed 
activity for completion. In the case of two equal 
completion times, select one of the 
corresponding timed activities, probabilistically. 

7. Fire the selected instantaneous or timed activity:  
 - Remove a token from all input places, 
 - Execute the function of all input gates, 

 - Add a token to all output places, and 
 - Execute the function of all output gates. 
8. Disable those enabled activities whose enabling 

predicate are not true in the current marking. 
9. Set the simulation clock to the time of the most 

eminent event. 
10. Collect the aggregated statistics and update 

user-defined queries. 
11. If the specified confidence level (or fixed 

replications/time interval) has not been 
achieved, go to step (1). 

It is needed to introduce fast and efficient 
techniques for the simulation of HSAN models. 
These methods may be based on a method proposed 
for fast simulation of SAN composed models 
[Sanders and Freire, 1993] or techniques for 
discrete-event simulation in the Möbius framework 
[Williamson, 1998]. 

5.5 Tool Support for HSANs 

For modelling and analysis with SAN-based 
models, including a new definition of SANs 
[Movaghar, 2001] and HSANs we have developed 
a modelling tool called SANBuilder [Abdollahi and 
Movaghar, 2004]. SANBuilder runs under 
Windows 2000/XP and enables the modeller to 
construct SAN and HSAN models in a graphical 
editor, define and save macro activities and load 
them to reuse in a new model.  

SANBuilder has an integrated development 
environment (IDE) for construction, compilation, 
animation, discrete-event simulation, and analytic 
solution of SAN-based models. We have used this 
tool for the construction of an HSAN model of a 
queueing network that is appeared in Fig. 3. 

A view of the user interface of SANBuilder is 
displayed in Fig. 4. 

 
Fig. 4. A view of the user interface of SANBuilder 
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For more information about SANBuilder, including 
its features, structure and solution techniques, 
please see [Abdollahi and Movaghar, 2004] 

6. CONCLUSIONS 

In this paper, we have presented the informal and 
formal definitions and behaviour of hierarchical 
stochastic activity networks (HSANs). HSAN 
models provide facilities for composing a hierarchy 
of submodels that are called macro activity. HSAN 
models encapsulate hierarchies in away similar to 
the programming languages.  

Similar to the ordinary SANs, HSANs can be used 
for modelling and analysis of various kinds and 
different aspects of computer and communication 
systems. HSANs can be used to build both 
Markovian and non-Markovian models.  

A summary of the advantages of HSANs is as 
follows: 

1. HSANs are hierarchical models. Macro activities 
encapsulate hierarchies and provide 
compositionality in a natural way and similar to 
object-oriented programming languages. HSAN 
models represent the hierarchy of hierarchical 
systems in a natural and understandable manner. 
Especially for software systems, HSANs are 
more appropriate than SANs plus composition 
techniques. 

2. HSANs provide top-down modelling paradigm. 
HSANs prepare a top-down model construction 
paradigm. While the approaches of SANs plus 
composition techniques are bottom-up. 

3. HSANs allow incremental modelling. It is 
possible to incrementally construct large HSAN 
models for complex systems by starting with 
simple macro activities and easily replacing 
them with enhanced ones. 

4. HSANs encourage reusability of submodels. The 
existence of macro activity with well-defined 
interface makes it possible to construct and share 
a repository of reusable HSAN submodels. 

5. Automatic code generation from HSAN models is 
possible. This can be achieved by modelling 
tools for HSANs and is a key requirement to use 
these models for software systems. 

6. Reduced state space generation for HSAN 
models is possible. With automatic 
transformation into an appropriate composition 
technique, the advantages of them for reduced 
state space generation can still be taken. 

We have also introduced basic methods for state 
space analysis and simulation of HSAN models and 
have shown how the existing methods can be used 
for this purpose. For modelling with HSANs, we 
have developed a modelling tool called 

SANBuilder. To make this tool more useful for 
the application on large-scale systems, we are 
working to implement efficient methods for the 
solution and simulation of HSAN models. 
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