
M.A. AZGOMI AND A.MOVAGHAR: HIERARCHICAL STOCHASTIC ACTIVITY NETWORKS

I.J.SIMULATION Vol.6 No. 1-2 ISSN 1473-804x online 1473-8031print 56

HIERARCHICAL STOCHASTIC ACTIVITY NETWORKS:
FORMAL DEFINITIONS AND BEHAVIOUR

MOHAMMAD ABDOLLAHI AZGOMI AND ALI MOVAGHAR

Department of Computer Engineering,
Sharif University of Technology,

Tehran 11365, Iran

azgomi@mehr.sharif.edu and movaghar@sharif.edu

Abstract: Stochastic activity networks (SANs) are a powerful and flexible extension of Petri nets. These models
can be used for the modelling and analysis of various kinds and different aspects of distributed real-time
systems. Similar to other classical extensions of Petri nets, SANs have some limitations for modelling complex
and large-scale systems. In order to remove some of these limitations and provide high-level modelling
constructs, we have defined a new extension for SANs, called hierarchical stochastic activity networks
(HSANs). HSAN models provide a construct for composing a hierarchy of SAN submodels that is called macro
activity. HSANs encapsulate hierarchies and a key benefit of these models is the possibility of automatic
selection and usage of techniques for model construction with reduced state spaces by their modelling tools. In
this paper, we will present the informal and formal definitions, behaviour and state process of HSANs. We will
also introduce methods for the solution of HSAN models by state space analysis and discrete-event simulation
techniques.

Keywords: stochastic Petri nets, stochastic activity networks, hierarchical modelling

1. INTRODUCTION

Stochastic activity networks (SANs) [Movaghar and
Meyer, 1984] are a stochastic generalization of
Petri nets [Peterson, 1982]. These models are more
powerful and flexible than most other stochastic
extensions of Petri nets such as stochastic Petri nets
(SPNs) [Molloy, 1982] and generalized stochastic
Petri nets (GSPNs) [Ajmone; Balbo and Conte
1984]. SANs permit the representation of
concurrency, timeliness, fault-tolerance and
degradable performance in a single model
[Movaghar, 1985]. SAN models have been used to
evaluate performance and dependability of a wide
range of systems and are supported by several
powerful modelling tools such as UltraSAN
[Sanders et al, 1995] and Möbius [Deavours et al,
2002].

Similar to other classical extensions of Petri nets,
SANs have some limitations for modelling complex
and large-scale systems. In order to remove some of
these restrictions, we have introduced a new
extension for SANs called hierarchical stochastic
activity networks (HSANs) [Abdollahi and
Movaghar, 2003]. HSAN models encapsulate
hierarchies and a key benefit of these models is the
possibility of automatic selection and usage of
techniques for model construction with reduced
state spaces.

In this paper we will present the informal and
formal definitions, behaviour and state process of
HSANs. We will also basically introduce methods
for state space analysis and simulation of HSAN

models and show how the existing methods can be
used for these purposes.

The rest of this paper is organized as follows. In
Sec. 2, motivations of this work are described. In
Sec. 3, the informal definitions and an example of
HSAN models are presented. The formal
definitions, behaviour and state process of HSANs
are presented in Sec. 4. Methods for the
transformation, analytic solution and simulation of
HSANs are introduced in Sec. 5. Finally, some
concluding remarks are mentioned in Sec. 6.

2. MOTIVATIONS

In the original definition of stochastic activity
networks [Movaghar and Meyer, 1984], these
models have been defined as a flat network of
primitives. However, a few techniques have been
introduced for constructing hierarchical and
composed SAN models in UltraSAN and Möbius
modelling tools.

An important state space reduction technique,
which is implemented in UltraSAN and Möbius
modelling tools, is the Replicate/Join construct
[Sanders and Meyer, 1991]. This construct provides
a hierarchical, tree-like method of combining
submodels to form a larger, composed model. As
the name may imply, there are two main methods
that can be used to combine submodels: Replicates
and Joins. Replicates are used to replicate a model
any number of times, often having one or more
state variables shared among all of the replicas as a
means of connection. Joins are used to bring
together two or more dissimilar models, connecting

M.A. AZGOMI AND A.MOVAGHAR: HIERARCHICAL STOCHASTIC ACTIVITY NETWORKS

I.J.SIMULATION Vol.6 No. 1-2 ISSN 1473-804x online 1473-8031print 57

them by sharing certain state variables between
them [Stillman, 1999].

There is a set of issues with this construct. It is
limited to a tree-like structure and an arbitrary
symmetric model structure, such as ring or mesh
cannot be expressed by this construct.

Replicate/Join construct has been extended and
generalized in the work of [Stillman, 1999] on the
graph composition formalism in the Möbius
modelling framework [Deavours, 2001]. This
formalism does not limit the model hierarchy to a
tree-like structure and any arbitrary structure (such
as ring or mesh) is possible.

Using the above techniques, a composed model is
constructed in a bottom-up manner using some
operations (such as Replicate and Join) [Sanders
and Meyer, 1991]. While top-down model
construction, especially, for large models, is more
appropriate. On the other hand, the use of these
composition formalisms is specific to the modelling
tools (UltraSAN or Möbius) and not SANs in
general. They have not been defined formally along
with the definition of SANs.

Related to the above difficulties, SANs have two
other restrictions:

• There is a lack of facilities for constructing
complex models incrementally, by starting with
abstract components and easily replacing them
with detailed and enhanced components. Here,
again a top-down paradigm for model
construction is needed.

• Since SAN models are flat, using a part of an
existing model, as a component for constructing
a new one is difficult. Specially, building and
sharing a repository of submodels with well-
defined interfaces is not easily possible.

On the other hand, programming languages,
especially object-oriented languages, have simple
and intuitive ways of encapsulating hierarchies.
Keeping in mind these ways and to overcome the
above difficulties and restrictions of SANs, we
have introduced hierarchical stochastic activity
networks (HSANs). We will introduce these models
in the next sections of this paper.

3. DEFINITIONS OF HIERARCHICAL
STOCHASTIC ACTIVITY NETWORKS

In this section we will define SAN and HSAN
models. The formal definition and behaviour of
HSANs will be presented in the next section.

3.1 A New Definition of SANs

There are two definitions for SAN models: The
original definition of SANs [Movaghar and Meyer,
1984 or Movaghar, 1985] and a new definition of

SANs [Movaghar, 2001]. We will use the latter
definition as the base model throughout this paper.
Therefore, we will introduce a new definition of
SANs in the following paragraphs.

A new definition of SANs is based on a unified
view of the system in three settings:
nondeterministic, probabilistic, and stochastic. In a
nondeterministic setting, nondeterminacy and
parallelism are represented in a nondeterministic
manner. In a probabilistic setting, nondeterminacy
is specified probabilistically but parallelism is
treated nondeterministically. In a stochastic setting,
both nondeterminacy and parallelism are modelled
probabilistically.

The nondeterministic setting of SANs is referred to
as activity networks, which are nondeterministic
models for representing concurrent and reactive
systems. Application of this setting is on the
analysis of logical aspects or verification of
concurrent and reactive systems. Disregarding the
timing related information of the model and
viewing it in a nondeterministic setting accomplish
this. The activity network model is then translated
into a transition system and verification is done.

For evaluating the operational aspects of systems
such as performance, dependability and
performability, the stochastic setting of SANs is
used. In this setting, both nondeterminacy and
parallelism are represented probabilistically
[Movaghar, 2001]. Based on the probability
distribution of timed activities, Markovian or non-
Markovian SAN models will be resulted.
Application of the another setting of SANs, namely,
probabitistic setting, is on probabilistic verification.

As we mentioned before, the nondeterministic
setting of SANs is called activity networks.
Activity networks have been developed for
representing concurrent systems. The transition of
Petri nets is replaced by a primitive called activity
in activity networks. There are two types of
activities: instantaneous activities and timed
activities. The former describe events, which occur
instantaneously, the latter represent processes,
which usually take some time to complete.
Instantaneous activities represent system activities,
which, relative to the performance variable in
question, are completed in a negligible amount of
time. Instantaneous activities model
nondeterminacy while timed activities represent
parallelism. Other primitives, which distinguish
activity networks from Petri nets, are gates. Gates
model complex interactions among activities and,
thus, increase modelling flexibility.

The original definition of SANs, as appeared in
1984, includes extra primitives, called "cases," for
modelling nondeterminacy, which, with the new
definition, can equivalently be replaced by some
instantaneous activities. A model based on the

M.A. AZGOMI AND A.MOVAGHAR: HIERARCHICAL STOCHASTIC ACTIVITY NETWORKS

I.J.SIMULATION Vol.6 No. 1-2 ISSN 1473-804x online 1473-8031print 58

original definition of SANs, must be checked for
well-behavedness. The well-behavedness check is
in general undecidable and is computationally
complex for most models. Some solutions have
been proposed in the literature to alleviate this
problem. However, in a new definition of SANs, no
such check will ever be necessary. Because the
syntax of the model has been defined free from
well-behavedness checking.

For more information about the differences
between these two definitions of SANs, please see
[Movaghar, 1984 and Movaghar, 2001].

Graphically, activity networks consist of the
following elements:

1. Activities, which are of two kinds: timed and
instantaneous. In a graphical representation, a
timed activity is depicted as and an
instantaneous activity is shown as .

2. Places, depicted as .

3. Input gates, which have a finite set of inputs and
one output. An input gate with n inputs is
depicted as in Fig. 1(a). To each such input gate
is associated a n-ary computable predicate,
called the enabling predicate, such that e:
Nn → {true, false} and a computable partial
function f, called the input function, such that f :
Nn → Nn, where f is defined for all values for
which the enabling predicate is true and N is the
set of natural numbers.

4. Output gates, which have a finite set of outputs
and one input. Gates are introduced to permit
greater flexibility in defining enabling and
completion rules. An output gate with n output is
depicted as in Fig. 1(b). To each such output
gate is associated a computable function g,
called output function, such that g: Nn → Nn,
where N is the set of natural numbers.

Fig. 1. Graphical representation of gates: (a)

Input gate, and (b) Output gate

Structurally, an activity network is an
interconnection of a finite number of primitives,
subject to the following connection rules
[Movaghar, 1985]:
1. Each input of an input gate is connected to a

unique place and the output of an input gate is
connected to a single activity.

2. Different input gates of an activity are
connected to different places.

3. Each output of an output gate is connected to a
unique place and the input of an output gate in
connected to a single activity.

4. Different output gates of an activity for a case
are connected to different places.

5. Each place and activity is connected to some
input or output gates.

In order to facilitate the use and to increase the
understandability of activity networks, the
following conventions are used in their graphical
representation:

a) Input gates with similar enabling predicates and
input functions are named similarly.

b) Output gates with similar output functions are
also named similarly.

c) An input gate with one input, enabling predicate
e(x): x ≥ 1, and input function f such that f(x) =
x–1, is shown as a directed line from its input to
its output.

d) An output gate with one output and output
function f such that g(x) = x+1, is shown as a
directed line from its input to its output.

e) An input gate with one input, enabling predicate
e(x): x = 0, and identity input function is shown
as a directed line from its input to its output
crossed by two short parallel lines.

The stochastic setting of SANs is called stochastic
activity networks. A SAN is formed by adjoining
functions C, F, and G, where C specifies the case
probability assigned to instantaneous activities, F
represents the probability distribution functions of
activity times and G describes the sets of
reactivation markings of timed activities.

SANs are a generalization of stochastic Petri nets
(SPNs) [Molloy, 1982] and closely resemble the
class of generalized stochastic Petri nets (GSPNs)
[Ajmone; Balbo and Conte, 1985]. The
development of SANs was motivated by the need
for a class of network (graphical) models suited to
modelling the performability of distributed real-
time systems.

3.2 HSAN Models

Now, we introduce hierarchical stochastic activity
networks (HSANs). HSAN models provide
hierarchies for a new definition of SANs. These
models have a new element called macro activity,
in addition to the five primitives of SANs. A macro
activity is an HSAN submodel, which is composed
of SAN elements or other macro activities.

The syntax of the usage of macro activity is similar
to the usage of timed or instantaneous activities.
Place fusion is used as a mechanism for interfacing
macro activities to other parts of an HSAN model.

1
2
.
.
n

1
2
.
.
n

(a) (b)

M.A. AZGOMI AND A.MOVAGHAR: HIERARCHICAL STOCHASTIC ACTIVITY NETWORKS

I.J.SIMULATION Vol.6 No. 1-2 ISSN 1473-804x online 1473-8031print 59

A macro activity may have zero or more input and
output fusion places. Fusion places are a subset of
normal places. A macro activity has a well-defined
interface that is similar to parameter passing of
procedure and functions in high-level programming
languages. The places surrounding a macro activity
are formal fusion places. When a macro activity is
used in an HSAN model, these formal places will
be bound by actual places, which are normal places
of SANs. In a graphical representation, a fusion
place is depicted as . A graphical representation
of a macro activity is shown in Fig. 2(a) and its
usage in Fig. 2(b).

Fig. 2. Graphical representation of a macro
activity: (a) Definition, and (b) Usage

As an example of HSAN models, please see the
model depicted in Fig. 3. Fig. 3(a) displays a macro
activity, called MM1NQ, for the M/M/1/N queue.
The macro activity has the following elements:
input (an input fusion place), Arrival (a timed
activity that models the arrival process), ChkFull
(an output gate that checks for the capacity of the
queue, N), Queue (a place that models the queue
line), Service (a timed activity that models the
service time) and output (an output fusion place).

The gate table for the macro activity MM1NQ is
shown in Tab. 1. In this table, the function of output
gate ChkFull is defined. This function checks
whether the queue is full or not. Arrivals, Rejected
and N are three global variables, which denote the
number of arrivals to the system, the number of
rejected customers and the capacity of the queue,
respectively.

Fig. 3(b) displays the HSAN model for a queueing
network, composed of six tandem/parallel queues.
Q1 through Q6, are some instantiations of the
MM1NQ. Arrival and Departure timed activities
models the input and output process of the network.
Input, Output1 through Output4 are some places,
which are bound to the input/output fusion places
of Q1 through Q6.

Fig. 3. HSAN representation of a queueing
network: (a) MM1NQ macro activity, (b) The

HSAN model

Tab. 1. Gate table for the macro activity MM1NQ
of Fig. 3

Gate Name Function

Output

Arrivals++;
if (MARK(Queue) < N)
 MARK(Queue)++;
else
 Rejected++;

4. FORMAL DEFINITIONS AND
BEHAVIOUR OF HSANS

Formal definition of HSANs is the basis for
analytic solution and simulation of these models.
Based on these definitions and a well-defined
syntax and semantics, HSAN tools will facilitate
the process of modelling and analysis with these
models.

The following formal definitions are based on a
new definition of SANs [Movaghar, 2001]. In the
following definitions, N denotes the set of natural
numbers and R+ represents the set of non-negative
real numbers.

4.1 Formal Definitions of HSANs

In this subsection, we formally define hierarchical
stochastic activity networks, macro activity and
some other concepts of HSANs.

Definition 4.1. Stochastic activity network (SAN) is
defined as a 11-tuple HSAN = (P, IA, TA, IG, OG,
IR, OR, C, F,Π, ρ) where:

• P is a finite set of places,

• IA is a finite set of instantaneous activities,

• TA is a finite set of timed activities,

IP1
OP1

OPm

:MAName

MAInstance

IPn

(b)

(b)

(a)

MA

input fusion places output fusion places

OFP1

OFPm

IFP1

IFPn

MAName

(a)

M.A. AZGOMI AND A.MOVAGHAR: HIERARCHICAL STOCHASTIC ACTIVITY NETWORKS

I.J.SIMULATION Vol.6 No. 1-2 ISSN 1473-804x online 1473-8031print 60

• IG is a finite set of input gates. Each input gate
has a finite number of inputs. To each G ∈ IG,
with m inputs, is associated a function fG : Nm →

Nm, called the function of G, and a predicate
gG: Nm → {true, false}, called the enabling

predicate of G,

• OG is a finite set of output gates. Each output
gate has a finite number of outputs. To each G ∈
OG, with m outputs, is associated a function
fG : Nm → Nm, called the function of G,

• IR ⊆ P × {1, ..., |P|} × IG × (IA ∪ TA) is the input
relation. IR satisfies the following conditions:

- For any (P1, i, G, a) ∈ IR such that G has m
inputs, i ≤ m,

- For any G ∈ IG with m inputs and i ∈ N, i ≤ m,
there exist a ∈ (IA ∪ TA) and P1 ∈ P such that
(P1, i, G, a) ∈ IR,

- For any (P1, i, G1, a), (P1, j, G2, a) ∈ IR, i = j
and G1 = G2.

In a graphical representation, (Pk, k, G, a) ∈ IR
means that place Pk is linked to k-th input of an
input gate G whose output is connected to
activity a. Pk is said to be an input place of a and
G is referred to as an input gate of a.

• OR ⊆ (IA ∪ TA) × OG × {1, ..., |P|} × P is the
output relation. OR satisfies the following
conditions:

- For any (a, i, G, P1) ∈ OR such that G has m
outputs, i ≤ m,

- For any G ∈ OG with m outputs and i ∈ N, i ≤
m, there exist a ∈ (IA ∪ TA) and P1 ∈ P such
that (a, G, i, P1) ∈ OR,

- For any (a, G1, i, P1), (a, G2, j, P1) ∈ OR, i = j
and G1 = G2.

In a graphical representation, (a, G, k, Pk) ∈ OR
means that activity a is linked to the input of an
output gate G whose k-th output is connected to
place Pk. G is said to be an output gate of a and
Pk is referred to as an output place of a.

• C: Nn × IA → [0, 1] is the case probability
function, where n = |P|.

• F = {F(.|µ, a); µ ∈ Nn, a ∈ TA} is the set of
activity time distribution functions, where n = |P|
and, for any µ ∈ Nn, and a ∈ TA, F(.|µ, a) is a
probability distribution function,

• Π: Nn × TA → {true, false} is the reactivation
predicate, where n is defined as before,

• ρ: Nn × TA → R+ is the enabling rate function,
where n is defined as before.

HSAN macro activity class is formally defined as
follows:

Definition 4.2. An HSAN macro activity class
(MAC) is defined as a 3-tuple MAC = (SAN, IFP,
OFP) where:

• SAN is defined as in Definition 4.1,

• IFP is the list of input fusion places, such that:

- OFP ⊆ P,

• OFP is the list of output fusion places, such that:

- OFP ⊆ P,

- IFP ∩ OFP = ∅,

- IFP ∪ OFP ≠ ∅.

Instances of a macro activity class can be used to
compose an HSAN model. The HSAN model is
defined as follows:

Definition 4.3. Hierarchical stochastic activity
network (HSAN) is defined as a is defined as a 4-
tuple HSAN = (SAN, δ, MA, FF) where:

• SAN is defined as in Definition 4.1,

• δ is a finite set of macro activity classes as in
Definition 4.2,

• MA is a finite set of macro activities. To each ma
∈ MA is associated a macro activity class mac ∈
δ.

• FF is a fusion function, which is defined as,

FF: MA × FP → P.

The fusion function FF, maps each fusion place
fp of ma to a place p, where ma ∈ MA, fp ∈
ma.FP, ma.FP = ma.IFP ∪ ma.OFP and p ∈ P.

Definition 4.4. Consider an HSAN as in Definition
4.3. A marking is a function µ: P → N, where for
each Pi ∈ P, µ (Pi) ∈ N. It is often convenient to
characterize a marking µ as a vector, that is, µ =
(µ1, …, µn), where µi = µ (Pi), i = 1, ..., n, and Pi
∈ P. An activity is enabled in a marking if the
enabling predicates of its input gates are true in that
marking. More formally, we have:

Definition 4.5. Consider an HSAN as in Definition
4.3. a ∈ (IA ∪ TA) is enabled in a marking µ if for
any input gate G of a with n inputs and an enabling
predicate gG,

gG(µ1, …, µ n) = true,

M.A. AZGOMI AND A.MOVAGHAR: HIERARCHICAL STOCHASTIC ACTIVITY NETWORKS

I.J.SIMULATION Vol.6 No. 1-2 ISSN 1473-804x online 1473-8031print 61

where µk = µ (Pk), for some Pk ∈ P such that (Pk,
k, G, a) ∈ IR, k =1, …, n. An activity is disabled in
a marking if it is not enabled in that marking. A
marking is stable if no instantaneous activity is
enabled in that marking. A marking is unstable if it
is not stable.

4.2 Well-Defined HSAN Models

HSANs are hierarchical models composed of
places, timed, instantaneous or macro activities. A
macro activity itself is composed of some places
and timed, instantaneous or other macro activities.
Therefore, it is needed to check for a cycle in the
nested usage of macro activities. This check is done
on the dependency graph (or composition graph) of
the model. In this graph, each node is a macro
activity and a composition relation between two
macro activities determines an arc. The root node
of the dependency graph is the HSAN model. If
there is no cycle in the dependency graph of an
HSAN model, it is well-defined and can be
analysed by a state space analysis or simulation
method. Therefore, we have the following
definitions:

Definition 4.6. Dependency graph (DG) of an
HSAN model, as in Definition 4.3, is defined as a
triplet DG = (N, A, R), where:

• N = {H} ∪ MA is the set of nodes of the graph,
such that:

- H is the root node of the model, and

- MA is the set of macro activities of the model,

• A is set of arcs of the graph, and

• R is the composition relation between two nodes
such that: R: A → N × N.

Definition 4.7 An HSAN model is well-defined, if
its dependency graph is finite and acyclic.

4.3 Behaviour of HSANs

A hierarchical stochastic activity network (HSAN)
with a marking is a dynamic system. The behaviour
of HSANs can be described as follows:

In an HSAN model, a marking will change only if
an activity either in the root level of the model or in
one of its macro activities completes. In a stable
marking, only one of the enabled timed activities is
allowed to complete. When there is more than one
enabled timed activity, the choice of which activity
to complete first is done stochastically. Enabled
timed activities require some time to complete. A
timed activity becomes active as soon as it is
enabled and remains so until it completes;
otherwise, it is inactive. Consider a hierarchical
stochastic activity network H as in Definition 4.3.
Suppose, at time t, a timed activity completes, and

µ is the stable marking of H immediately after t. A
timed activity a is activated at t, if a is enabled in µ
and one of the following occurs:

• a is inactive immediately before t,

• a completes at t,

• Π (µ, a) = true.

Whenever the above happens, a is assigned an
activity time τ, where τ is a random variable with
probability distribution function F(.|µ, a). When a
timed activity a is enabled in a stable marking µ, it
is processed with a rate ρ(µ, a). A timed activity
completes whenever it is processed for its activity
time. Upon completion of an activity, the next
marking occurs immediately.

In an unstable marking, only one of the enabled
instantaneous activities may complete (i.e., enabled
instantaneous activities have priority over enabled
timed activities for completion). When there is
more than one enabled instantaneous activity, the
choice of which activity to complete first is made
probabilistically. More specifically, let H be a
hierarchical stochastic activity network as in
Definition 4.3. Suppose, H is in an unstable
marking µ. Let A' be the set of enabled
instantaneous activities of H in µ. Then, a ∈ A'
completes with probability α, where

∑ ∈

=
''

)',(
),(

Aa
aC

aC
µ

µα (4.1).

When an activity completes, it may change the
marking of its input and output places. This change
is governed by the functions of its input gates and
output gates, and is done in two steps as follows.
First, the marking of its input places may change
due to the functions of its input gates, resulting into
an intermediary marking. Next, in this latter
marking, the marking of its output places may also
change due to the functions of its output gates,
resulting into a final marking after the completion
of that activity. More specifically, let us consider a
hierarchical stochastic activity network as in
Definition 4.3. Suppose an activity, a, completes in
a marking µ. The next marking µ' is determined in
two steps as follows. First, an intermediary marking
µ" is obtained from µ by the function of input gates
of a. µ' is then determined from µ" by the function
of output gates of a. More formally, µ' and µ" are
defined as follows:

• For any P1 ∈ P, which is not an input or output
place of a, µ' (P1) = µ (P1),

• For any input gate G of a with m inputs and a
function fG, fG(µ1, ..., µm) = (µ"1, ..., µ"m),
where µk = µ(Pk) and µ"k = µ"(Pk) such that (Pk,
k, G, a) ∈ IR, k = 1, …, m.

M.A. AZGOMI AND A.MOVAGHAR: HIERARCHICAL STOCHASTIC ACTIVITY NETWORKS

I.J.SIMULATION Vol.6 No. 1-2 ISSN 1473-804x online 1473-8031print 62

• For any output gate G of a with m outputs and a
function fG, fG(µ"1, ..., µ"m) = (µ'1, ..., µ'm),
where µ"k = µ"(Pk) and µ'k = µ'(Pk) such that (a,
G, k, Pk) ∈ OR, k = 1, …, m.

The above summarizes the behaviour of an HSAN.
This behaviour may be studied more formally using
the concept of the state process of HSANs as in the
following subsection.

3.2 State Process of HSANs

In order to study the state process of HSANs, we
need to define the notion of a hierarchical
probabilistic activity networks and hierarchical
probabilistic activity system:

Definition 4.8. A hierarchical probabilistic activity
network is derived from HSAN, where the
stochastic properties of timed activities (F, ρ and
Π) are eliminated. In the resulting model,
nondeterminacy is specified probabilistically by
case probability functions (C) of instantaneous
activities.

Definition 4.9. A hierarchical probabilistic activity
system is a 4-tuple (Q, A, h, p0) where:

• Q is a set of states,

• A is the activity alphabet,

• h = {h(.|q, a); q ∈ Q, a ∈ A} is the set of
transition distributions such that, for any q ∈ Q
and a ∈ A, h(.|q, a) = 0 or h(.|q, a) is a
probability distribution over Q,

• p0 is the initial state distribution, which is a
probability distribution over Q.

For a ∈ A and q, q' ∈ Q, q' is said to be immediately
reachable from q under a with probability α, if
h(q'|q, a) = α.

We now present a notion of equivalence for
hierarchical probabilistic activity systems.

Definition 4.10. Let U = (Q, A, h, p0) and U' = (Q',
A', h', p'0) be two hierarchical probabilistic activity
systems with the same activity alphabet (i.e., A =
A'). U and U' are said to be equivalent if there exists
a symmetric binary relation γ on Q ∪ Q' such that:

• Q = γ (Q') and Q' = γ (Q),

• For any q0 ∈ Q and q'0 ∈ Q' such that (q0, q'0)
∈ γ,

∑ ∑
∈ ∈

=
})'({ })({'

00
0 0

),'(')(
qq qq

qpqp
γ γ

• For any a ∈ A, q1, q2 ∈ Q, and q'1, q'2 ∈ Q'
such that (q1, q'1) ∈ γ and (q2, q'2) ∈ γ,

∑ ∑
∈ ∈

=
})'({ })2({'

11
2

).,'|'('),|(
qq qq

aqqhaqqh
γ γ

γ above is said to be a bisimulation between U and
U'. U and U' are isomorphic if γ is a bijection.

Definition 4.11. Let H be an HSAN as in
Definition 4.3. The state process of H is a random
process {X(t); t ∈ R+} where X(t) denotes the stable
marking of H at time t.

Definition 4.12. Let X = {X(t); t ∈ R+} and X' =
{X'(t); t ∈ R+} be two random processes with the
set of states Q and Q', respectively. X and X' are
said to be stochastically equivalent if there exists a
symmetric binary relation γ on Q ∪ Q' such that:

• γ (Q) = Q' and γ (Q') = Q,

• For any ti ∈ [0, ∞), Qi ⊆ Q, and Q'i ⊆ Q', such
that Qi = γ (Q'i) and Q' = (Qi), i = 0, …, n ∈ N,

p[X(ti) ∈ Qi; i = 0,…, n] = p[X'(ti) ∈ Q'; i = 0, …, n].

X and X' are stochastically isomorphic (equal) if γ is
a bijection (an equality).

We have:

Proposition 4.1. Let H = (L, F, Π, ρ) and H' = (L',
F', Π', ρ') be two HSANs where L and L' are some
equivalent hierarchical probabilistic activity
networks. Suppose, L and L' realize hierarchical
probabilistic activity systems U = (Q, A, h, p0) and
U' = (Q', A', h', p'0), respectively. (A = A'.) The
state processes of H and H' will be stochastically
equivalent if there exists a symmetric binary
relation γ on Q ∪ Q' such that:

• γ is a bisimulation between U and U',

• For any a ∈ A, q ∈ Q, and q' ∈ Q' such that (q,
q') ∈ γ and a is enabled in both q and q', F(.|q, a)
= F'(.|q', a), G(q, a) = G(q', a), and ρ(q, a) =
ρ'(q', a).

The state behaviour of an HSAN is closely related
to the notion of a generalized semi-Markov process
as defined in [Schassberger, 1978]. We get:

Proposition 4.2. The following statements are true:

• Any generalized semi-Markov process with a
finite set of events is stochastically isomorphic
to the state process of an HSAN,

• There exists an HSAN whose state process is not
a generalized semi-Markov process,

• The state process of any HSAN with state-
independent activity time distribution functions
and a false reactivation predicate is a
generalized semi-Markov process.

We now consider Markovian models. We have:

M.A. AZGOMI AND A.MOVAGHAR: HIERARCHICAL STOCHASTIC ACTIVITY NETWORKS

I.J.SIMULATION Vol.6 No. 1-2 ISSN 1473-804x online 1473-8031print 63

Theorem 4.1. Let H be an HSAN as in Definition
4.3. The state process of H is a Markov process iff
for any timed activity a which is enabled in a stable
marking µ, and any stable marking µac in which a is
last activated prior to being enabled in µ,

F(τ|µac, a) = 1 – e-α(µ, a)τ

where α(µ, a) is a positive real number which only
depends on µ and a.

Proof. Let H = (L, F, Π, ρ) with a corresponding
hierarchical probabilistic activity network L which
realizes a hierarchical probabilistic activity system
U = (Q, A, h, p0). Denote X = {X(t), t ∈ R+} the
state process of H.

if: We note that for any t, δt ∈ R+, where δt is
sufficiently small, and any stable markings µ, µ' ∈
Q, we have

 P[X(t+δt) = µ'|X(t) = µ, X(t) = µ, X(t'), 0 ≤ t' < t]

= P[X(t+δt) = µ'|X(t) = µ]

≈ ∑
∈Aa

thaa δµµµρµα)',(),(),(

Using the memoryless property of exponentially
distributed random variables and the dynamic
behaviour of the model, we can conclude that X is a
Markov process.

only if: Note that exponentially distributed random
variables are the only random variables with
memoryless property and that X is assumed to be a
Markov process. The proof then follows from the
definition of the dynamic behaviour of the model. �

An HSAN is said to be Markovian if its state
process is a Markov process. We find:

Corollary 4.1. Let H be an HSAN with a set of
exponential activity time distribution functions such
that any activity with a state-dependent activity
time distribution function has also a true
reactivation predicate. Then, H is Markovian.

Corollary 4.2. Any discrete-space, continuous-
time, and time-homogeneous Markov process is
stochastically isomorphic to the state process of a
Markovian HSAN.

5. SOLUTION OF HSAN MODELS

If an HSAN model is well-defined (Definition 4.6
and Definition 4.7), it can be solved by analytic
solution or simulation methods; otherwise, it cannot
be solved. It is possible to transform a well-defined
HSAN model into an equivalent flat SAN model.
Then, it is possible to employ the existing analytic
solution or simulation techniques. It is also possible
to transform an HSAN model to appropriate
composition formalism. These methods are
described in the following subsection.

5.1 State Spaces of HSANs

State space analysis is the standard method for the
analysis of Petri net models. The basic idea behind
this method is to construct a directed graph, which
has a node for each reachable system state and an
arc for each possible state change.

Definition 5.1. State space (SS) of an HSAN model
is defined as a 4-tuple SS = (M, E, A, M0), where:
• M is the set of nodes (reachable markings of the

graph) such that ∀µ ∈ M: µ = (µ1, ..., µn), where
µi = µ(Pi), i = 1, ..., n, n = |P| and Pi ∈ P.

• E is set of arcs (edges) of the graph, and
• A is a node function such that: A: E → M × M,
• M0 is the initial marking of the HSAN model

such that: M0 = (µ1, ..., µn), where µi = µ(Pi), i =
1, ..., n, n = |P| and Pi ∈ P.

5.2 Transformation of HSANs into a Flat HSAN
Model

If an HSAN model is well-defined, it has an
equivalent flat SAN model. For the analysis of an
HSAN model, it is possible to transform it into an
equivalent flat SAN model. A substitution
algorithm can be employed to flatten the HSAN
model. In each step of the algorithm, all macro
activities on the leaves of the graph will be
substitute by their definitions. This will be repeated
until the only node on the graph is the root node.
The resulting model is a flat SAN model. Since,
naming in HSAN models is local, names of two
elements in two different levels of the hierarchy of
an HSAN model may be identical. To resolve the
problem of duplicate names in the substitution of
macro activity with its definition, the name of each
element of an macro activity will be preceded by
the name of its parent macro activity. For example,
if we have an macro activity named ma1 in an
HSAN model and there is a place named p1 in the
definition of ma1, a place named ma1.p1 will be
added to the flattened model.

5.3 Transformation of HSANs into Composition
Formalisms

The main disadvantage of the above flattening
method is the explosion of nodes in the resulting
model that may lead to the explosion of the state
space of the model. There are a few techniques for
constructing SAN models in a way, which avoid
state-space explosion problem. A key benefit of
HSAN models is the possibility of automatic
employment of such techniques by their modelling
tools. A modelling tool for HSANs can transform a
model into the following composition formalisms:

1. Replicate/Join construct: A composition
technique for SANs is the Replicate/Join
construct [Sanders and Meyer, 1991]. A possible

M.A. AZGOMI AND A.MOVAGHAR: HIERARCHICAL STOCHASTIC ACTIVITY NETWORKS

I.J.SIMULATION Vol.6 No. 1-2 ISSN 1473-804x online 1473-8031print 64

way of the solution of HSAN models is to
transform them into this construct. A modelling
tool for HSANs can check for a tree-like
structure in the dependency graph of the model. It
can automatically find the shared states based on
fusion places of macro activities. Then, it can
obtain the hierarchical and composed model
using Replicate and Join operations. For the
solution of the resulting model, the technique
proposed in [Sanders and Meyer, 1991 or
Stillman, 1999] can be employed.

2. Graph Composition formalism: Another
composition formalism, which has been proposed
in the Möbius modelling framework for SANs
and other models, is the Graph Composition
formalism [Stillman, 1999]. This formalism does
not limit the model hierarchy to a tree-like
structure and any arbitrary structure (such as ring
or mesh) is possible. A modelling tool for
HSANs can check for the possibility of the usage
of this formalism. Then, it can transform the
corresponding HSAN model and uses the method
proposed in [Stillman, 1999] to solve the model.

5.4 Discrete-Event Simulation of HSAN Models

If an HSAN model or one of its macro activities is
composed of one or more non-exponential timed
activities or its state-space is infinite, it may not be
solved analytically. In such cases, discrete-event
simulation may be employed to solve the model. A
discrete-event simulation algorithm for an HSAN
model may have the following steps:
1. Determine the set of enabled activities in the

current marking of the model.
2. Reactivate those disabled activities whose

reactivation predicates are true in the current
marking.

3. Generate the activity execution time for newly
enabled or reactivated activities.

4. Apply the corresponding enabling rates on the
remaining time of the enabled timed activities.

5. If more than one instantaneous activity is
enabled in an unstable marking, select one of
them probabilistically. The activity selection
probability (α) is computed by formula (4.1) of
Sec. 4.3.

6. In a stable marking (i.e. no instantaneous
activity is enabled), considering the remaining
time of all enabled timed activities and their
respective enabling rates, select the next timed
activity for completion. In the case of two equal
completion times, select one of the
corresponding timed activities, probabilistically.

7. Fire the selected instantaneous or timed activity:
 - Remove a token from all input places,
 - Execute the function of all input gates,

 - Add a token to all output places, and
 - Execute the function of all output gates.
8. Disable those enabled activities whose enabling

predicate are not true in the current marking.
9. Set the simulation clock to the time of the most

eminent event.
10. Collect the aggregated statistics and update

user-defined queries.
11. If the specified confidence level (or fixed

replications/time interval) has not been
achieved, go to step (1).

It is needed to introduce fast and efficient
techniques for the simulation of HSAN models.
These methods may be based on a method proposed
for fast simulation of SAN composed models
[Sanders and Freire, 1993] or techniques for
discrete-event simulation in the Möbius framework
[Williamson, 1998].

5.5 Tool Support for HSANs

For modelling and analysis with SAN-based
models, including a new definition of SANs
[Movaghar, 2001] and HSANs we have developed
a modelling tool called SANBuilder [Abdollahi and
Movaghar, 2004]. SANBuilder runs under
Windows 2000/XP and enables the modeller to
construct SAN and HSAN models in a graphical
editor, define and save macro activities and load
them to reuse in a new model.

SANBuilder has an integrated development
environment (IDE) for construction, compilation,
animation, discrete-event simulation, and analytic
solution of SAN-based models. We have used this
tool for the construction of an HSAN model of a
queueing network that is appeared in Fig. 3.

A view of the user interface of SANBuilder is
displayed in Fig. 4.

Fig. 4. A view of the user interface of SANBuilder

M.A. AZGOMI AND A.MOVAGHAR: HIERARCHICAL STOCHASTIC ACTIVITY NETWORKS

I.J.SIMULATION Vol.6 No. 1-2 ISSN 1473-804x online 1473-8031print 65

For more information about SANBuilder, including
its features, structure and solution techniques,
please see [Abdollahi and Movaghar, 2004]

6. CONCLUSIONS

In this paper, we have presented the informal and
formal definitions and behaviour of hierarchical
stochastic activity networks (HSANs). HSAN
models provide facilities for composing a hierarchy
of submodels that are called macro activity. HSAN
models encapsulate hierarchies in away similar to
the programming languages.

Similar to the ordinary SANs, HSANs can be used
for modelling and analysis of various kinds and
different aspects of computer and communication
systems. HSANs can be used to build both
Markovian and non-Markovian models.

A summary of the advantages of HSANs is as
follows:

1. HSANs are hierarchical models. Macro activities
encapsulate hierarchies and provide
compositionality in a natural way and similar to
object-oriented programming languages. HSAN
models represent the hierarchy of hierarchical
systems in a natural and understandable manner.
Especially for software systems, HSANs are
more appropriate than SANs plus composition
techniques.

2. HSANs provide top-down modelling paradigm.
HSANs prepare a top-down model construction
paradigm. While the approaches of SANs plus
composition techniques are bottom-up.

3. HSANs allow incremental modelling. It is
possible to incrementally construct large HSAN
models for complex systems by starting with
simple macro activities and easily replacing
them with enhanced ones.

4. HSANs encourage reusability of submodels. The
existence of macro activity with well-defined
interface makes it possible to construct and share
a repository of reusable HSAN submodels.

5. Automatic code generation from HSAN models is
possible. This can be achieved by modelling
tools for HSANs and is a key requirement to use
these models for software systems.

6. Reduced state space generation for HSAN
models is possible. With automatic
transformation into an appropriate composition
technique, the advantages of them for reduced
state space generation can still be taken.

We have also introduced basic methods for state
space analysis and simulation of HSAN models and
have shown how the existing methods can be used
for this purpose. For modelling with HSANs, we
have developed a modelling tool called

SANBuilder. To make this tool more useful for
the application on large-scale systems, we are
working to implement efficient methods for the
solution and simulation of HSAN models.

REFERENCES

Abdollahi Azgomi M. and Movaghar A. 2003,
"Hierarchical Stochastic Activity Networks," Proc.
of 10th Int. Conf. on Analytical and Stochastic
Modelling Tech. and App. (ASMTA03),
Nottingham, UK Pp169-174.

Abdollahi Azgomi M. and Movaghar A. 2004, "A
Modelling Tool for Hierarchical Stochastic Activity
Networks," Proc. of 11th Int. Conf. on Analytical
and Stochastic Modelling Tech. and App.
(ASMTA04), Magdeburg, Germany (2004) Pp141-
146.

Ajmone Marsan M.; Balbo, G. and Conte, G.: A
Class of Generalized Stochastic Petri Nets for
Performance Evaluation of Multiprocessors
Systems, ACM Trans. Comp. Sys., 2(2) (1984) 93-
122

Deavours D.D. 2002, Formal Specification of The
Möbius Modelling Framework, Ph.D. Dissertation,
University of Illinois at Urbana-Champaign.

Deavours D.D. et al 2002, "The Möbius Framework
and Its Implementation," IEEE Trans. on Soft. Eng.,
Vol. 28, No. 10, Pp956-969.

Molloy M.K. 1982, "Performance Analysis Using
Stochastic Petri Nets," IEEE Trans. on Computers,
C-31, Pp913-917.

Movaghar A. and Meyer J.F. 1984, "Performability
Modelling with Stochastic Activity Networks,"
Proc. of the 1984 Real-Time Systems Symp.,
Austin, TX, USA, Pp215-224.

Movaghar A. 1985, Performability Modelling with
Stochastic Activity Networks, Ph.D. Dissertation,
University of Michigan.

Movaghar A. 2001, "Stochastic Activity Networks:
A New Definition and Some Properties," Scientia
Iranica, Vol. 8, No. 4, Pp303-311.

Peterson J.L. 1981, Petri Net Theory and the
Modelling of Systems, Prentice-Hall.

Sanders W.H. and Freire R.S. 1993, "Efficient
Simulation of Hierarchical Stochastic Activity
Network Models," Discrete Event Dynamic
Systems: Theory and App., Vol. 3, no. 2/3, Pp271-
300.

Sanders W.H. and Meyer J.F. 1991, "Reduced Base
Model Construction Methods for Stochastic
Activity Networks," IEEE J. on Selected Areas in
Comm., Vol. 9, No. 1, Pp25–36.

M.A. AZGOMI AND A.MOVAGHAR: HIERARCHICAL STOCHASTIC ACTIVITY NETWORKS

I.J.SIMULATION Vol.6 No. 1-2 ISSN 1473-804x online 1473-8031print 66

Sanders W.H. et al 1995, "The UltraSAN
Modelling Environment," Performance Evaluation,
Vol. 24, Pp1-33.

Schassberger R. 1978, "Insensitivity of Steady-
State Distributions of Generalized Semi-Markov
Processes with Speeds," Adv. Appl. Prob., Vol. 10,
Pp836-851

Stillman A.J. 1999, Model Composition in the
Möbius Modelling Framework, M.S. Thesis,
University of Illinois at Urbana-Champaign.

Williamson A.L. 1998, Discrete Event Simulation
in the Möbius Modelling Framework, M.S. Thesis,
University of Illinois at Urbana-Champaign.

BIOGRAPHIES

Mohammad Abdollahi
Azgomi received the B.S.
and M.S. degrees in
computer engineering
(1991 and 1996) from
Sharif University of
Technology, Tehran, Iran.
He is currently a Ph.D.
candidate in computer
engineering at the
department of computer

engineering, Sharif University of Technology,
under the supervision of professor Ali Movaghar.
His research interests include modelling and
evaluation with Petri nets and stochastic activity
networks, object-oriented modelling and network
security.

Ali Movaghar received the
B.S. degree in electrical
engineering (1977) from
Tehran University and the
M.S. and Ph.D. degrees in
computer, information and
control engineering (1979
and 1985) from the
University of Michigan,
Ann Arbor, USA. His

research interests include performance and
dependability modelling, verification and
validation, computer networks and distributed real-
time systems. He is currently a faculty member at
the department of computer engineering, Sharif
University of Technology, Tehran, Iran.

